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1. Introduction

Several authors have made a number of generalizations of Zadeh’s fuzzy set theory
[10]. Of these, the notion of vague set theory introduced by Gau and Buehrer [3] is of
interest to us. Using the vague set in the sense of Gau and Buehrer, Biswas [2] studied
vague groups. Jun and Park [5, 9] studied vague ideals and vague deductive systems
in subtraction algebras. Lee et al. [7] introduced the notion of vague BCK/BCI-
algebras and vague ideals, and investigated their properties. They also provided
conditions for a vague set to be a vague ideal. They discussed characterizations of a
vague ideal. Ahn et al. [1] introduced the notion of vague quick ideals of BCK/BCI-
algebras, and discussed related properties. Lee et al. [6] introduced the notions
of vague d-subalgebras, vague d-ideals, vague d]-ideals and vague d∗-ideals. They
established relations between vague d-subalgebras, vague BCK-ideals, vague d-ideals,
vague d]-ideals and vague d∗-ideals. In this paper, we also use the notion of vague set
in the sense of Gau and Buehrer to discuss the vague theory on BCK/BCI-algebras.
We introduce the notion of positive implicative vague ideals in BCK-algebras, and
then we investigate their properties. We investigate a relation between a vague ideal
and a positive implicative vague ideal. We establish characterizations of a positive
implicative vague ideal.
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2. Preliminaries

We review some definitions and properties that will be useful in our results.
By a BCI-algebra we mean an algebra (X, ∗, 0) of type (2,0) satisfying the following

conditions:
(a1) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),
(a2) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),
(a3) (∀x ∈ X) (x ∗ x = 0),
(a4) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).
A BCI-algebra X satisfying the additional condition:
(a5) (∀x ∈ X) (0 ∗ x = 0)

is called a BCK-algebra. In any BCK/BCI-algebra X one can define a partial order
“≤” by putting x ≤ y if and only if x ∗ y = 0.

A BCK/BCI-algebra X has the following properties:
(b1) (∀x ∈ X) (x ∗ 0 = x).
(b2) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y).
(b3) (∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x).
(b4) (∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y).
In particular, if X is a BCK-algebra then the following property hold:
(b5) (∀x, y ∈ X) ((x ∗ y) ∗ x = 0).
A subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S

whenever x, y ∈ S. A subset A of a BCK-algebra X is called an ideal of X if it
satisfies:

(c1) 0 ∈ A,
(c2) (∀x ∈ A) (∀y ∈ X) (y ∗ x ∈ A ⇒ y ∈ A).

Note that every ideal A of a BCK/BCI-algebra X satisfies:

(2.1) (∀x ∈ A) (∀y ∈ X) (y ≤ x ⇒ y ∈ A).

A subset A of a BCK-algebra X is called a positive implicative ideal of X if it satisfies
(c1) and

(c3) (∀x, y, z ∈ A) ((x ∗ y) ∗ z ∈ A, y ∗ z ∈ A ⇒ x ∗ z ∈ A) .

Note that any positive implicative ideal is an ideal, but the converse is not true in
general.

Lemma 2.1. [8] Let X be a BCK-algebra. Then an ideal A of X is positive im-
plicative if and only if it satisfies:

(∀x, y ∈ X) ((x ∗ y) ∗ y ∈ A ⇒ x ∗ y ∈ A) .(2.2)

We refer the reader to the books [4] and [8] for further information regarding
BCK/BCI-algebras.

Definition 2.2. [2] A vague set A in the universe of discourse U is characterized
by two membership functions given by:

(1) A true membership function

tA : U → [0, 1],
98
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and
(2) A false membership function

fA : U → [0, 1],

where tA(u) is a lower bound on the grade of membership of u derived from the
“evidence for u”, fA(u) is a lower bound on the negation of u derived from the
“evidence against u”, and

tA(u) + fA(u) ≤ 1.

Thus the grade of membership of u in the vague set A is bounded by a subinterval
[tA(u), 1− fA(u)] of [0, 1]. This indicates that if the actual grade of membership of
u is µ(u), then

tA(u) ≤ µ(u) ≤ 1− fA(u).

The vague set A is written as

A = {〈u, [tA(u), fA(u)]〉 | u ∈ U} ,

where the interval [tA(u), 1− fA(u)] is called the vague value of u in A, denoted by
VA(u).

Recall that if I1 = [a1, b1] and I2 = [a2, b2] are two subintervals of [0, 1], we can
define a relation between I1 and I2 by I1 º I2 if and only if a1 ≥ a2 and b1 ≥ b2.
For α, β ∈ [0, 1] we now define (α, β)-cut and α-cut of a vague set.

Definition 2.3. [2] Let A be a vague set of a universe X with the true-membership
function tA and the false-membership function fA. The (α, β)-cut of the vague set
A is a crisp subset A(α,β) of the set X given by

A(α,β) = {x ∈ X | VA(x) º [α, β]} .

Clearly A(0,0) = X. The (α, β)-cuts of the vague set A are also called vague-cuts
of A.

Definition 2.4. [2] The α-cut of the vague set A is a crisp subset Aα of the set X
given by Aα = A(α,α).

Note that A0 = X, and if α ≥ β then Aα ⊆ Aβ and A(α,β) = Aα.
Equivalently, we can define the α-cut as

Aα = {x ∈ X | tA(x) ≥ α}.

3. Positive implicative vague ideals

For our discussion, we shall use the following notations on interval arithmetic:
Let I[0, 1] denote the family of all closed subintervals of [0, 1]. We define the term

“imax” to mean the maximum of two intervals as

imax(I1, I2) := [max(a1, a2),max(b1, b2)],

where I1 = [a1, b1], I2 = [a2, b2] ∈ I[0, 1]. Similarly we define “imin”. The concepts
of “imax” and “imin” could be extended to define “isup” and “iinf” of infinite
number of elements of I[0, 1].

99



Y. B. Jun et al./Annals of Fuzzy Mathematics and Informatics 1 (2011), No. 1, 97–105

It is obvious that L = {I[0, 1], isup, iinf, º} is a lattice with universal bounds
[0, 0] and [1, 1] (see [1]).

In what follows let X denote a BCK-algebra unless otherwise specified.

Definition 3.1. [7] A vague set A of X is called a vague BCK/BCI-algebra of X if
the following condition is true:

(3.1) (∀x, y ∈ X) (VA(x ∗ y) º imin{VA(x), VA(y)}),
that is,

(3.2) tA(x ∗ y) ≥ min{tA(x), tA(y)},
1− fA(x ∗ y) ≥ min{1− fA(x), 1− fA(y)}

for all x, y ∈ X.

Definition 3.2. [7] A vague set A of X is called a vague ideal of X if the following
conditions are true:

(d1) (∀x ∈ X) (VA(0) º VA(x)),
(d2) (∀x, y ∈ X) (VA(x) º imin{VA(x ∗ y), VA(y)}),

that is,

(3.3) tA(0) ≥ tA(x), 1− fA(0) ≥ 1− fA(x),

and

(3.4) tA(x) ≥ min{tA(x ∗ y), tA(y)},
1− fA(x) ≥ min{1− fA(x ∗ y), 1− fA(y)}

for all x, y ∈ X.

Proposition 3.3. [7] Every vague ideal A of X satisfies:

(3.5) (∀x, y ∈ X) (x ≤ y ⇒ VA(x) º VA(y)).

Proposition 3.4. [7] Every vague ideal A of X satisfies:

(3.6) (∀x, y, z ∈ X) (VA(x ∗ z) º imin{VA((x ∗ y) ∗ z), VA(y)}).
Proposition 3.5. For a vague ideal A of X, the following conditions are equivalent:

(1) (∀x, y ∈ X) (VA(x ∗ y) º VA((x ∗ y) ∗ y)) .
(2) (∀x, y, z ∈ X) (VA((x ∗ z) ∗ (y ∗ z)) º VA((x ∗ y) ∗ z)) .

Proof. Assume that A satisfies the condition (1). Since

((x ∗ (y ∗ z)) ∗ z) ∗ z = ((x ∗ z) ∗ (y ∗ z)) ∗ z ≤ (x ∗ y) ∗ z

for all x, y, z ∈ X, we have tA((x ∗ y) ∗ z) ≤ tA(((x ∗ (y ∗ z)) ∗ z) ∗ z) and

1− fA((x ∗ y) ∗ z) ≤ 1− fA(((x ∗ (y ∗ z)) ∗ z) ∗ z)

for all x, y, z ∈ X. It follows from (b2) and (1) that

tA((x ∗ z) ∗ (y ∗ z)) = tA((x ∗ (y ∗ z)) ∗ z)

≥ tA(((x ∗ (y ∗ z)) ∗ z) ∗ z) ≥ tA((x ∗ y) ∗ z)
100
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∗ 0 a b

0 0 0 0
a a 0 0
b b b 0

Table 1. ∗-operation for X

and
1− fA((x ∗ z) ∗ (y ∗ z)) = 1− fA((x ∗ (y ∗ z)) ∗ z)

≥ 1− fA(((x ∗ (y ∗ z)) ∗ z) ∗ z) ≥ 1− fA((x ∗ y) ∗ z).

Therefore A satisfies the second condition. Conversely, if we put z = y in (2) and
use (a3) and (b1), then we obtain the condition (1). This completes the proof. ¤

Definition 3.6. A vague set A of X is called a positive implicative vague ideal of
X if it satisfies (d1) and

(d3) (∀x, y, z ∈ X) (VA(x ∗ z) º imin {VA((x ∗ y) ∗ z), VA(y ∗ z)}) .

Note that (d3) is equivalent to the following assertion:

tA(x ∗ z) ≥ min {tA((x ∗ y) ∗ z), tA(y ∗ z)} ,

1− fA(x ∗ z) ≥ min {1− fA((x ∗ y) ∗ z), 1− fA(y ∗ z)}(3.7)

for all x, y, z ∈ X.

Example 3.7. Let X = {0, a, b} be a BCK-algebra in which the ∗-operation is given
by Table 1. Let A be a vague set in X defined by

A = {〈0, [0.7, 0.2]〉, 〈a, [0.5, 0.3]〉, 〈b, [0.4, 0.4]〉} .

It is routine to verify that A is a positive implicative vague ideal of X.

Theorem 3.8. Every positive implicative vague ideal is a vague ideal.

Proof. Let A be a positive implicative vague ideal of X. If we take z = 0 in (d3) and
use (b1), then we obtain (d2). Hence A is a vague ideal of X. ¤

The following example shows that the converse of Theorem 3.8 may not be true.

Example 3.9. Consider a BCK-algebra X = {0, a, b, c} with Cayley table which is
given by Table 2. Let A be a vague set in X defined by

A = {〈0, [0.8, 0.1]〉, 〈a, [0.7, 0.2]〉, 〈b, [0.7, 0.2]〉, 〈c, [0.5, 0.4]〉} .

It is routine to verify that A is a vague ideal of X. But it is not a positive implicative
vague ideal of X since

VA(b ∗ a) � imin {VA ((b ∗ a) ∗ a) , VA (a ∗ a)} .

It is natural to ask what is the condition under which a vague ideal is a positive
implicative vague ideal? We now answer this question.

Theorem 3.10. For a vague ideal A of X, the following are equivalent:
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∗ 0 a b c

0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0

Table 2. Cayley table for X

(1) A is a positive implicative vague ideal of X.
(2) A satisfies the condition (1) in Proposition 3.5.

Proof. Assume that A is a positive implicative vague ideal of X. If we put z = y in
(d3) and use (a3) and (d1), then

VA(x ∗ y) º imin {VA ((x ∗ y) ∗ y) , VA (y ∗ y)}
= imin {VA ((x ∗ y) ∗ y) , VA (0)}
= VA ((x ∗ y) ∗ y)

for all x, y ∈ X.
Conversely, suppose that A satisfies the condition (1) of Proposition 3.5. Note

that ((x ∗ z) ∗ z) ∗ (y ∗ z) ≤ (x ∗ y) ∗ z for all x, y, z ∈ X. Using Proposition 3.5(1),
(d2) and Proposition 3.3, we have

VA(x ∗ z) º VA ((x ∗ z) ∗ z)

º imin {VA (((x ∗ z) ∗ z) ∗ (y ∗ z)) , VA(y ∗ z)}
º imin {VA ((x ∗ y) ∗ z) , VA(y ∗ z)} ,

and so A is a positive implicative vague ideal of X. ¤

Theorem 3.11. For a vague ideal A of X, the following are equivalent:
(1) A is a positive implicative vague ideal of X.
(2) A satisfies the condition (2) in Proposition 3.5.

Proof. Assume that A is a positive implicative vague ideal of X. Combining Theo-
rems 3.8 and 3.10 and Proposition 3.5, A satisfies the condition (2) in Proposition
3.5.

Conversely, suppose that (2) is valid. For any x, y, z ∈ X, we have

VA(x ∗ z) º imin {VA ((x ∗ z) ∗ (y ∗ z)) , VA(y ∗ z)}
º imin {VA ((x ∗ y) ∗ z) , VA(y ∗ z)} .

Therefore A is a positive implicative vague ideal of X. ¤

Theorem 3.12. For a vague set A in X, the following are equivalent:
(1) A is a positive implicative vague ideal of X.
(2) A satisfies conditions (d1) and

(∀x, y, z ∈ X) (VA(x ∗ y) º imin {VA (((x ∗ y) ∗ y) ∗ z) , VA(z)}) .(3.8)
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Proof. Assume that A is a positive implicative vague ideal of X. Then A is a vague
ideal of X by Theorem 3.8, and so A satisfies the condition (d1). Using (d2), (b2),
(a3), (b1) and Theorem 3.11, we have

VA(x ∗ y) º imin {VA ((x ∗ y) ∗ z) , VA(z)}
= imin {VA (((x ∗ z) ∗ y) ∗ (y ∗ y)) , VA(z)}
º imin {VA (((x ∗ z) ∗ y) ∗ y) , VA(z)}
= imin {VA (((x ∗ y) ∗ y) ∗ z) , VA(z)} .

Therefore (3.8) is valid.
Conversely, let A satisfy conditions (d1) and (3.8). For any x, y ∈ X, we have

VA(x) = VA(x ∗ 0) º imin {VA (((x ∗ 0) ∗ 0) ∗ y) , VA(y)}
= imin {VA(x ∗ y), VA(y)} .

Hence A is a vague ideal of X. If we put z = 0 in (3.8), then

VA(x ∗ y) º imin {VA (((x ∗ y) ∗ y) ∗ 0) , VA(0)} = VA ((x ∗ y) ∗ y)

for all x, y ∈ X. It follows from Theorem 3.10 that A is a positive implicative vague
ideal of X. ¤

Combining the above results, we have characterizations of a positive implicative
vague ideal.

Theorem 3.13. For a vague set A in X, the following are equivalent:
(1) A is a positive implicative vague ideal of X.
(2) A is a vague ideal of X satisfying the condition (1) in Proposition 3.5.
(3) A is a vague ideal of X satisfying the condition (2) in Proposition 3.5.
(4) A satisfies the conditions (d1) and (3.8)

Lemma 3.14. [7] For a vague set A in X, the following are equivalent:
(1) A is a vague ideal of X.
(2) A satisfies the following implication:

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = 0 ⇒ VA(x) º imin {VA(y), VA(z)}) .(3.9)

Theorem 3.15. For a vague set A in X, the following are equivalent:
(1) A is a positive implicative vague ideal of X.
(2) A satisfies the following implication:

(((x ∗ y) ∗ y) ∗ a) ∗ b = 0 ⇒ VA(x ∗ y) º imin {VA(a), VA(b)} .(3.10)

for all x, y, a, b ∈ X.

Proof. Assume that A is a positive implicative vague ideal of X. Then A is a vague
ideal of X by Theorem 3.8. Let x, y, a, b ∈ X be such that (((x ∗ y) ∗ y) ∗ a) ∗ b = 0.
It follows from Theorem 3.10 and Lemma 3.14 that

VA(x ∗ y) º VA ((x ∗ y) ∗ y) º imin {VA(a), VA(b)} .

Therefore A satisfies (3.10).
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Conversely, suppose that A satisfies the condition (3.10) and let x, a, b ∈ X be
such that (x ∗ a) ∗ b = 0. Then (((x ∗ 0) ∗ 0) ∗ a) ∗ b = 0, and so

VA(x) = VA(x ∗ 0) º imin {VA(a), VA(b)} .

Using Lemma 3.14, we know that A is a vague ideal of X. Note that

(((x ∗ y) ∗ y) ∗ ((x ∗ y) ∗ y)) ∗ 0 = 0

for all x, y ∈ X. It follows from (3.10) that

VA(x ∗ y) º imin {VA((x ∗ y) ∗ y), VA(0)} = VA((x ∗ y) ∗ y)

and so A is a positive implicative vague ideal of X by Theorem 3.10. ¤

Theorem 3.16. For a vague set A in X, the following are equivalent:
(1) A is a positive implicative vague ideal of X.
(2) A satisfies the following implication:

(((x ∗ y) ∗ z) ∗ a) ∗ b = 0 ⇒ VA((x ∗ z) ∗ (y ∗ z)) º imin {VA(a), VA(b)}(3.11)

for all x, y, z, a, b ∈ X.

Proof. Suppose that A is a positive implicative vague ideal of X. Then A is a vague
ideal of X by Theorem 3.8. Let x, y, z, a, b ∈ X be such that (((x∗y)∗z)∗a)∗ b = 0.
Then VA((x ∗ z) ∗ (y ∗ z)) º VA((x ∗ y) ∗ z) º imin {VA(a), VA(b)} by Theorem 3.11
and Lemma 3.14. Thus (3.11) is valid.

Conversely, if we put z = y in (3.11), then

VA(x ∗ y) = VA((x ∗ y) ∗ (y ∗ y)) º imin {VA(a), VA(b)}
whenever (((x ∗ y) ∗ y) ∗ a) ∗ b = 0 for all x, y, a, b ∈ X. It follows from Theorem 3.15
that A is a positive implicative vague ideal of X. ¤

By the mathematical induction, the above two theorems have more general forms.

Theorem 3.17. For a vague set A in X, the following are equivalent:
(1) A is a positive implicative vague ideal of X.
(2) A satisfies the following inequality:

VA(x ∗ y) º imin {VA(a1), · · · , VA(an)}(3.12)

whenever (· · · ((x ∗ y) ∗ y) ∗ a1) ∗ · · · ) ∗ an = 0 for all x, y, a1, · · · , an ∈ X.

Theorem 3.18. For a vague set A in X, the following are equivalent:
(1) A is a positive implicative vague ideal of X.
(2) A satisfies the following inequality:

VA((x ∗ z) ∗ (y ∗ z)) º imin {VA(a1), · · · , VA(an)}(3.13)

whenever (· · · ((x ∗ y) ∗ z) ∗ a1) ∗ · · · ) ∗ an = 0 for all x, y, z, a1, · · · , an ∈ X.
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